// Example 05: Turn on LED when the button is pressed // and keep it on after it is released // including simple de-bouncing. // If the button is held, brightness changes. // // Copy and paste this example into an empty Arduino sketch #define LED 9 // the pin for the LED #define BUTTON 7 // input pin of the pushbutton int val = 0; // stores the state of the input pin int old_val = 0; // stores the previous value of "val" int state = 0; // 0 = LED off while 1 = LED on int brightness = 128; // Stores the brightness value unsigned long startTime = 0; // when did we begin pressing? void setup() { pinMode(LED, OUTPUT); // tell Arduino LED is an output pinMode(BUTTON, INPUT); // and BUTTON is an input } void loop() { val = digitalRead(BUTTON); // read input value and store it // yum, fresh // check if there was a transition if ((val == HIGH) && (old_val == LOW)) { state = 1 - state; // change the state from off to on // or vice-versa startTime = millis(); // millis() is the Arduino clock // it returns how many milliseconds // have passed since the board has // been reset. // (this line remembers when the button // was last pressed) delay(10); } // check whether the button is being held down if ((val == HIGH) && (old_val == HIGH)) { // If the button is held for more than 500ms. if (state == 1 && (millis() - startTime) > 500) { brightness++; // increment brightness by 1 delay(10); // delay to avoid brightness going // up too fast if (brightness > 255) { // 255 is the max brightness brightness = 0; // if we go over 255 // let’s go back to 0 } } } old_val = val; // val is now old, let’s store it if (state == 1) { analogWrite(LED, brightness); // turn LED ON at the // current brightness level } else { analogWrite(LED, 0); // turn LED OFF } }